

Step 3

(same speed with step 2) V≠0

$$\Box v_3^{iii} = v^{iii} - v_1^{iii} - v_2^{iii}$$

\Box Response of the shaft due to excitation(V_3^{iii}) is found.

□ Mobility function of the shaft (Mss)

$$Mss = \frac{v_3^{iii}}{F_{impact}}$$

17.02.2014 © 2014 UNIVERSITÄT ROSTOCK | EMSHIP WEEK LA SPEZIA

Calculation of force coming from propeller

In operation step 2, v^{ii} is measured.

Traditio et Innovatio

$$v^{ii} = v_1^{ii} + v_2^{ii}$$

Universität Rostock

> v_1^{ii} = response of the hull in operation 2 v_2^{ii} = response due to propeller in operation 2

Equation 1 can be expressed in other way in terms of force and mobility function $(v^{ii}, \underline{M_{hull}} \text{ and } \underline{M_{ss}} \text{ are already known})$

(1)

$$v^{ii} = F_1^{ii} * M_{hull} + F_2^{ii} * M_{ss}$$

Traditio et Innovatio

 F_1^{ii} = force coming from the hull during operation 2

(2) F_2^{ii} = force coming from the propeller during operation 2

Response due to propeller can be defined in terms of velocity and mobility function (\underline{M}_{ss} is known)

$$v_2^{ii} = F_2^{ii} * M_{ss} \tag{3}$$

In operation 2, the response of the hull in terms of velocity and mobility function is

 $v_1^{ii} = F_1^{ii} * M_{hull}$

Universität Rostock (4)

17.02.2014 © 2014 UNIVERSITÄT ROSTOCK | EMSHIP WEEK LA SPEZIA

